An inclusive search for the standard model Higgs boson (H) produced with large transverse momentum (p_T) and decaying to a bottom quark-antiquark pair ($b\bar{b}$) is performed using a data set of pp collisions at $\sqrt{s} = 13$ TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. A highly Lorentz-boosted Higgs boson decaying to $b\bar{b}$ is reconstructed as a single, large radius jet, and it is identified using jet substructure and dedicated b tagging techniques. The method is validated with $Z \rightarrow b\bar{b}$ decays. The $Z \rightarrow b\bar{b}$ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of $H \rightarrow b\bar{b}$ with reconstructed $p_T > 450$ GeV and in the pseudorapidity range $-2.5 < \eta < 2.5$ is 74 ± 48(stat)$^{+17}_{-10}$(syst) fb, which is consistent within uncertainties with the standard model prediction.

DOI: 10.1103/PhysRevLett.120.071802

In the standard model (SM) [1–3], the Brout-Englert-Higgs mechanism [4–8] is responsible for electroweak symmetry breaking and the mass of elementary particles. Although a Higgs boson (H) was discovered [9–11], the LHC data sets of pp collisions at $\sqrt{s} = 7$ and 8 TeV were not sufficient to establish the coupling to bottom quarks [12], despite the 58.1% expected branching fraction of the Higgs boson to bottom quark-antiquark ($b\bar{b}$) pairs [13]. The most sensitive method to search for $H \rightarrow b\bar{b}$ decays at a hadron collider is to use events in which the Higgs boson is produced in association with a W or Z boson (VH) decaying to leptons, and recoiling with a large transverse momentum (p_T) [14], in order to suppress the overwhelming irreducible background from quantum chromodynamics (QCD) multijet production of b quarks. Because of this background, an observation of $H(b\bar{b})$ decays in the gluon fusion production mode (GGF) as considered impossible. This Letter presents the first inclusive search for $H \rightarrow b\bar{b}$, where the Higgs boson is produced with high-p_T. Measurements of high-p_T $H(b\bar{b})$ decays may resolve the loop induced and tree-level contributions to the GGF process [15] and provide an alternative approach to study the top quark Yukawa coupling in addition to the $t\bar{t}H$ process.

The results reported in this Letter are based on a data set of pp collisions at $\sqrt{s} = 13$ TeV, collected with the CMS detector at the LHC in 2016, and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The main experimental difficulties for this search originate from the large cross section for background multijet events at low jet mass and the restrictive trigger requirements needed to reduce the data recording rate. Therefore, we require events to have a high-p_T Higgs boson candidate and define six p_T categories from 450 GeV to 1 TeV with variable width from 50 to 200 GeV. Combinatorial backgrounds are reduced by requiring the Higgs boson’s decay products to be clustered in a single jet [14]. The jet is required to have a two-prong substructure and b tagging properties consistent with the $H(b\bar{b})$ signal. The nontrivial jet mass shape is difficult to model parametrically. For this reason, the dominant background from SM QCD multijet production is estimated in data by inverting the b tagging requirement, which is, by design, decorrelated from jet mass and p_T. A simultaneous fit to the distributions of the jet mass in all categories is performed in the range 40 to 201 GeV to extract the inclusive $H(b\bar{b})$ and $Z(b\bar{b})$ production cross sections and to determine the normalizations and shapes of the jet mass distributions for the backgrounds.

A detailed description of the CMS detector, together with a definition of the coordinate system and the relevant kinematic variables, can be found in Ref. [16]. The central feature of the CMS apparatus is a superconducting solenoid...
of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections, reside within the solenoid. Forward calorimeters extend the pseudorapidity (η) [16] coverage provided by the barrel and end cap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

Simulated samples of signal and background events are produced using various Monte Carlo (MC) event generators, with the CMS detector response modeled using the GEANT4 [17] program. The MadGraph5_aMC@NLO 2.3.3 [18] generator is used for the diboson, $W + j$, $Z + j$, QCD multijet samples at leading order (LO) accuracy, with matching [19] between jets from the matrix element calculation and the parton shower description, while POWHEG 2.0 [20–22] at next-to-leading order (NLO) precision is used to model the $t\bar{t}$ and single-top processes. For parton showering and hadronization, the POWHEG and MadGraph5_aMC@NLO samples are interfaced with PYTHIA 8.212 [23]. The PYTHIA parameters for the underlying event description are set to the CUETP8M1 tune [24].

The production cross sections for the diboson samples are calculated to next-to-next-to-leading-order (NNLO) accuracy with the MCFM 7.0 program [25]. The cross section for top quark pair production is computed with TOP++ 2.0 [26] at NNLO. The cross sections for $W + j$ and $Z + j$ samples include higher-order QCD and electroweak (EW) corrections and improve modeling of high-p_T W and Z bosons events [27–30]. The parton distribution function (PDF) set NNPDF3.0 [31] is used to produce all simulated samples, with the accuracy (LO or NLO) corresponding to that of the generator used. The Higgs boson signal samples are produced using the POWHEG event generator with $m_H = 125$ GeV. For the GGF production mode, the POWHEG generated sample with up to one extra jet in matrix element calculations is normalized to the inclusive cross section. The p_T spectrum of the Higgs boson for the vector boson fusion (VBF) production mode is reweighted to account for N3LO corrections to the cross section. These corrections [48,49] have a negligible effect on the yield for this process for events with Higgs boson $p_T > 450$ GeV.

The particle-flow event algorithm [50] is employed to reconstruct and identify each individual particle with an optimized combination of information from the various elements of the CMS detector. The algorithm identifies each reconstructed particle as an electron, a muon, a photon, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, and its magnitude is referred to as p_T^{miss}.

The particles are clustered into jets using the anti-k_T algorithm [51] with a distance parameter of 0.8 (AK8 jets). To mitigate the effect of pileup, the pileup per particle identification (PUPPI) algorithm [52] assigns a weight to each particle prior to jet clustering based on the likelihood of the particle originating from the hard scattering vertex. Further corrections are applied to the jet energy as a function of jet η and p_T to account for detector response nonlinearities.

To isolate the Higgs boson signal, a high-p_T signal jet is required. Combinations of several online selections are used, all requiring the total hadronic transverse energy in the event (H_T) or jet p_T to be above a given threshold. In addition, a minimum threshold on the jet mass is imposed after removing remnants of soft radiation with the jet trimming technique [53] to reduce the H_T or p_T thresholds and improve the signal acceptance. The online selection is fully efficient at selecting events offline with at least one AK8 jet with $p_T > 450$ GeV and $|\eta| < 2.5$. Events containing identified and isolated electrons, muons, or τ leptons with $p_T > 10$, 10, or 18 GeV and $|\eta| < 2.5, 2.4$, or 2.3, respectively, are vetoed to reduce backgrounds from SM EW processes. Since no genuine p_T^{miss} is expected for signal processes, events with $p_T^{miss} > 140$ GeV are removed in order to further reduce the top quark background contamination. The leading (in p_T) jet in the event is assumed to be the Higgs boson candidate, the H jet. The soft-drop algorithm [54,55] is used to remove soft and wide-angle radiation with a soft radiation fraction z less than 0.1. The parameter β is set to zero, which corresponds to the case in which approximately the same fraction of energy is groomed away, regardless of the initial jet energy.

branching fraction of 31.7 ± 9.5 fb for reconstructed Higgs boson $p_T > 450$ GeV and $|\eta| < 2.5$. An uncertainty of 30% to the overall correction is estimated from the comparison of different predictions obtained by using (i) a merging scale of 100 instead of 20 GeV, (ii) the inclusive two-jet GGF process generation, and (iii) the MadGraph5_aMC@NLO effective field theory approximation [13,46] normalized to the inclusive N3LO cross section. The p_T spectrum of the Higgs boson for the vector boson fusion (VBF) production mode is reweighted to account for N3LO corrections to the cross section. These corrections [48,49] have a negligible effect on the yield for this process for events with Higgs boson $p_T > 450$ GeV.

The particle-flow event algorithm [50] is employed to reconstruct and identify each individual particle with an optimized combination of information from the various elements of the CMS detector. The algorithm identifies each reconstructed particle as an electron, a muon, a photon, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, and its magnitude is referred to as p_T^{miss}.

The particles are clustered into jets using the anti-k_T algorithm [51] with a distance parameter of 0.8 (AK8 jets). To mitigate the effect of pileup, the pileup per particle identification (PUPPI) algorithm [52] assigns a weight to each particle prior to jet clustering based on the likelihood of the particle originating from the hard scattering vertex. Further corrections are applied to the jet energy as a function of jet η and p_T to account for detector response nonlinearities.

To isolate the Higgs boson signal, a high-p_T signal jet is required. Combinations of several online selections are used, all requiring the total hadronic transverse energy in the event (H_T) or jet p_T to be above a given threshold. In addition, a minimum threshold on the jet mass is imposed after removing remnants of soft radiation with the jet trimming technique [53] to reduce the H_T or p_T thresholds and improve the signal acceptance. The online selection is fully efficient at selecting events offline with at least one AK8 jet with $p_T > 450$ GeV and $|\eta| < 2.5$. Events containing identified and isolated electrons, muons, or τ leptons with $p_T > 10$, 10, or 18 GeV and $|\eta| < 2.5, 2.4$, or 2.3, respectively, are vetoed to reduce backgrounds from SM EW processes. Since no genuine p_T^{miss} is expected for signal processes, events with $p_T^{miss} > 140$ GeV are removed in order to further reduce the top quark background contamination. The leading (in p_T) jet in the event is assumed to be the Higgs boson candidate, the H jet. The soft-drop algorithm [54,55] is used to remove soft and wide-angle radiation with a soft radiation fraction z less than 0.1. The parameter β is set to zero, which corresponds to the case in which approximately the same fraction of energy is groomed away, regardless of the initial jet energy.
The use of soft-drop grooming reduces the jet mass \(m_{SD} \) for background QCD events when large jet masses arise from soft gluon radiation. For signal events, the jet mass is primarily determined by the \(H(b\bar{b}) \) decay kinematics and its distribution peaks at the mass of the Higgs boson. Dedicated \(m_{SD} \) corrections [56] are derived from simulation and data in a region enriched with merged \(W(q\bar{q}) \) decays from \(t\bar{t} \) events. They remove a residual dependence on the jet \(p_T \) and match the jet mass scale and resolution to those observed in data.

The dimensionless mass scale variable for QCD jets, \(\rho = \log(m_{SD}^2/p_T^2) \) [54,57], whose distribution is roughly invariant in different ranges of jet \(p_T \), is used to characterize the correlation between the jet \(b \) tagging discriminator, jet mass, and jet \(p_T \). Only events in the range \(-6.0 < \rho < -2.1 \) are considered, to avoid instabilities at the edges of the distribution due to finite cone limitations from the AK8 jet clustering (\(\rho \gtrsim -2.1 \)) and to avoid the nonperturbative regime of the soft-drop mass calculation (\(\rho \lesssim -6.0 \)). This requirement is fully efficient for the Higgs boson signal.

The \(N_2^1 \) variable [58], which is based on a ratio of 2-point and 3-point generalized energy correlation functions (ECFs) [59], is exploited to determine how consistent a jet is with having a two-prong substructure. The calculation of \(N_2^1 \) is based on the jet constituents after application of the soft-drop grooming algorithm to the jet. It provides excellent discrimination between two-prong signal jets and QCD background jets [58]. However, any selection on \(N_2^1 \) or other similar variables [60] shapes the jet mass distributions differently depending on the \(p_T \) of the jet. Therefore a transformation of \(N_2^1 \) to \(N_2^{1,\text{DDT}} \) is applied, where DDT stands for designed decorrelated tagger [57], to reduce its correlation with \(\rho \) and \(p_T \) in multijet events. We define \(N_2^{1,\text{DDT}} = N_2^1 - N_2^{1,2(26\%)} \), where \(N_2^{1,2(26\%)} \) is the 26th percentile of the \(N_2^1 \) distribution in simulated QCD events as a function of \(\rho \) and \(p_T \). This ensures that the selection \(N_2^{1,\text{DDT}} < 0 \) yields a constant QCD background efficiency of 26% across the entire \(\rho \) and \(p_T \) range considered in this search. The chosen percentile maximizes the sensitivity to the Higgs boson signal. In order to select events in which the \(H \) jet is most likely to contain two \(b \) quarks, we use the double-\(b \) tagger algorithm [61]. Several observables that characterize the distinct properties of \(b \) hadrons and their flight directions in relation to the jet substructure are used as input variables to this multivariate algorithm in order to distinguish between \(H \) jets and QCD jets. An \(H \) jet is considered double-\(b \) tagged if its double-\(b \) tag discriminator value is above a threshold corresponding to a 1% misidentification rate for QCD jets and a 33% efficiency for \(H(b\bar{b}) \) jets.

Events with (without) a double-\(b \) tagged \(H \) jet define the passing (failing) region. In the passing region, the gluon fusion process dominates, although other Higgs boson production mechanisms contribute: VBF (12%), \(VH \) (8%), and \(t\bar{t}H \) (5%). They are all taken into account when extracting the Higgs boson yield.

The contribution of \(t\bar{t} \) production to the total SM background is estimated to be less than 3%. It is obtained from simulation corrected with scale factors derived from a \(t\bar{t} \)-enriched control sample in which an isolated muon is required. This sample is included in a global fit used to extract the signal and the scale factors are treated as unconstrained parameters. They multiply the \(t\bar{t} \) contribution, correcting its overall normalization and the double-\(b \) mistag efficiency for jets originating from top quark decays.

The main background in the passing region, QCD multijet production, has a nontrivial jet mass shape that is difficult to model parametrically and dependent on jet \(p_T \), so we constrain it using the signal-depleted failing region. Since the double-\(b \) tagger discriminator and the jet mass are largely uncorrelated, the passing and failing regions have similar QCD jet mass distributions, and their ratio, the “pass-fail ratio” \(R_{pf} \), is expected to be nearly constant as a function of jet mass and \(p_T \). To account for the residual difference between the shapes of passing and failing events, \(R_{pf} \) is parametrized as a polynomial in \(\rho \) and \(p_T \),

\[
R_{pf}(\rho, p_T) = \sum_{k,l} a_{k,l} \rho^k (p_T)^l.
\]

The coefficients \(a_{k,l} \) have no external constraints but are determined from a simultaneous fit to the data in passing and failing regions across the whole jet mass range. To determine the order of the polynomial necessary to fit the data, a Fisher F-test [62] is performed. Based on its results, a polynomial of second order in \(\rho \) and first order in \(p_T \) is selected.

The systematic uncertainties associated with the jet mass scale, the jet mass resolution, and the \(N_2^{1,\text{DDT}} \) selection efficiency are correlated among the \(W, Z, \) and \(H(b\bar{b}) \) processes. These uncertainties are estimated using an independent sample of merged \(W \) jets. Additional details are available in the Supplemental Material [63], which includes Ref. [64]. The efficiency of the double-\(b \) tagger is measured in data and simulation in a sample enriched in \(bb \) from gluon splitting [61]. Scale factors relating data and simulation are then computed and applied to the simulation. These scale factors determine the initial distributions of the jet mass for the \(W(q\bar{q}) \), \(z(q\bar{q}) \), and \(H(b\bar{b}) \) processes, and they are further constrained in the fit to data due to the presence of the \(W \) and \(Z \) resonances in the jet mass distribution. The uncertainty associated with the modeling of the GGF Higgs \(p_T \) spectrum is propagated to the overall normalization of the GGF Higgs signal. In addition, the shape of the GGF Higgs \(p_T \) distribution is allowed to vary depending on the Higgs boson \(p_T \) by up to 30% at 1000 GeV, without changing the overall normalization. To account for some potentially \(p_T \)-dependent deviations due to missing higher-order corrections, uncertainties are applied to the \(W(q\bar{q}) \) and \(Z(q\bar{q}) \) yields that are \(p_T \)-dependent and correlated per \(p_T \) bin. An additional
systematic uncertainty is included to account for potential differences between the W and Z higher-order corrections (EW W/Z decorrelation). Finally, additional systematic uncertainties are applied to the $W(q\bar{q})$, $Z(q\bar{q})$, and $H(b\bar{b})$ yields to account for the uncertainties due to the jet energy scale and resolution [65], variations in the amount of pileup, and the integrated luminosity determination [66]. A quantitative summary of the systematic effects considered is shown in Table I.

In order to validate the background estimation method and associated systematic uncertainties, studies are performed on simulated samples injecting signal events and determining the bias on the measured signal cross section. No significant bias is observed in these studies.

A binned maximum likelihood fit to the observed m_{SD} distributions in the range 40 to 201 GeV with 7 GeV bin width is performed using the sum of the $H(b\bar{b})$, W, Z, tt, and QCD multijet contributions. The fit is done simultaneously in the passing and failing regions of the six p_T categories within $450 < p_T < 1000$ GeV, and in the tt-enriched control region. The production cross sections relative to the SM cross sections (signal strengths) for the Higgs and the Z bosons, μ_H and μ_Z, respectively, are extracted from the fit. Figure 1 shows the m_{SD} distributions in data for the passing and failing regions with measured SM background and $H(b\bar{b})$ contributions. Contributions from W and Z boson production are clearly visible in the data.

The measured Z boson signal strength is $\mu_Z = 0.78 \pm 0.14^{+0.19}_{-0.13} (\text{stat}) \pm 0.20 (\text{syst})$, which corresponds to an observed significance of 5.1 standard deviations (σ) with 5.8\sigma expected. This constitutes the first observation of the Z boson signal in the single-jet topology [67] and validates the substructure and b tagging techniques for the Higgs boson search in the same topology. The measured cross section for the $Z + \text{jets}$ process for jet $p_T > 450$ GeV and $|\eta| < 2.5$ is $0.85 \pm 0.16^{+0.20}_{-0.14} (\text{stat}) \pm 0.20 (\text{syst})$ pb, which is

<table>
<thead>
<tr>
<th>Systematic source</th>
<th>W/Z</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Pileup</td>
<td><1%</td>
<td><1%</td>
</tr>
<tr>
<td>N_2^{btag} selection efficiency</td>
<td>4.3%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Double-b tag</td>
<td>4% (Z)</td>
<td>4%</td>
</tr>
<tr>
<td>Jet energy scale/ resolution</td>
<td>10/15%</td>
<td>10/15%</td>
</tr>
<tr>
<td>Jet mass scale (p_T)</td>
<td>0.4%/100 GeV (p_T)</td>
<td>0.4%/100 GeV (p_T)</td>
</tr>
<tr>
<td>Simulation size</td>
<td>2–25%</td>
<td>4–20% (GGF)</td>
</tr>
<tr>
<td>H p_T correction</td>
<td>…</td>
<td>30% (GGF)</td>
</tr>
<tr>
<td>NLO QCD corrections</td>
<td>10%</td>
<td>…</td>
</tr>
<tr>
<td>NLO EW corrections</td>
<td>15–35%</td>
<td>…</td>
</tr>
<tr>
<td>NLO EW W/Z decorrelation</td>
<td>5–15%</td>
<td>…</td>
</tr>
</tbody>
</table>

FIG. 1. The m_{SD} distributions in data for the failing (left) and passing (right) regions and combined p_T categories. The QCD multijet background in the passing region is predicted using the failing region and the pass-fail ratio R_{pw}. The features at 160 and 180 GeV in the m_{SD} distribution are due to the kinematic selection on p_T, which affects each p_T category differently. In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the nonresonant backgrounds, is shown.
TABLE II. Fitted signal strength, expected and observed significance of the Higgs and Z boson signal. The 95% confidence level upper limit (UL) on the Higgs boson signal strength is also listed.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>H no p_T corrections</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed signal strength</td>
<td>$2.3^{+1.8}_{-1.6}$</td>
<td>$3.2^{+2.2}_{-2.0}$</td>
<td>$0.78^{+0.23}_{-0.19}$</td>
</tr>
<tr>
<td>Expected UL signal strength</td>
<td><3.3</td>
<td><4.1</td>
<td>\cdots</td>
</tr>
<tr>
<td>Observed UL signal strength</td>
<td><5.8</td>
<td><7.2</td>
<td>\cdots</td>
</tr>
<tr>
<td>Expected significance</td>
<td>0.7σ</td>
<td>0.5σ</td>
<td>5.8σ</td>
</tr>
<tr>
<td>Observed significance</td>
<td>1.5σ</td>
<td>1.6σ</td>
<td>5.1σ</td>
</tr>
</tbody>
</table>

In summary, an inclusive search for the standard model Higgs boson with $p_T > 450$ GeV decaying to bottom quark-antiquark pairs and reconstructed as a single, large-radius jet is presented. The $Z +$ jets process is observed for the first time in the single-jet topology with a significance of 5.1σ. The Higgs production is measured with an observed (expected) significance of 1.5σ (0.7σ) when including Higgs boson p_T spectrum corrections accounting for higher-order and finite top quark mass effects. The measured cross section times branching fraction for the gluon fusion $H(b\bar{b})$ production for reconstructed p_T and $|\eta| < 2.5$ is 74 ± 48(stat)$^{+17}_{-10}$(syst) fb, which is consistent with the SM prediction within uncertainties.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COCICENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[57] J. Dolen, P. Harris, S. Marzani, S. Rappoccio, and N. Tran, Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure, J. High Energy Phys. 05 (2016) 156.
[63] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.071802 for details on the systematic uncertainties associated with the jet mass scale, the jet mass resolution, and the N^2_{DDT} selection.
Université Libre de Bruxelles, Bruxelles, Belgium
Ghent University, Ghent, Belgium
Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Université de Mons, Mons, Belgium
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Estadual Paulista, São Paulo, Brazil
Universidade Federal do ABC, São Paulo, Brazil
Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences
University of Sofia, Sofia, Bulgaria
Beihang University, Beijing, China
Institute of High Energy Physics, Beijing, China
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Universidad de Los Andes, Bogota, Colombia
University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
University of Split, Faculty of Science, Split, Croatia
Institute Rudjer Boskovic, Zagreb, Croatia
University of Cyprus, Nicosia, Cyprus
Charles University, Prague, Czech Republic
Universidad San Francisco de Quito, Quito, Ecuador
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
Department of Physics, University of Helsinki, Helsinki, Finland
Helsinki Institute of Physics, Helsinki, Finland
Lappeenranta University of Technology, Lappeenranta, Finland
IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
Georgian Technical University, Tbilisi, Georgia
Thilisi State University, Tbilisi, Georgia
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
Deutsches Elektronen-Synchrotron, Hamburg, Germany
University of Hamburg, Hamburg, Germany
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
National and Kapodistrian University of Athens, Athens, Greece
National Technical University of Athens, Athens, Greece
University of Ioannina, Ioannina, Greece
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
Wigner Research Centre for Physics, Budapest, Hungary
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
Institute of Physics, University of Debrecen, Debrecen, Hungary
Indian Institute of Science (IISc), Bangalore, India
National Institute of Science Education and Research, Bhubaneswar, India
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, HBNI, Kolkata, India
Indian Institute of Technology Madras, Madras, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research-A, Mumbai, India
Tata Institute of Fundamental Research-B, Mumbai, India
Indian Institute of Science Education and Research (IISER), Pune, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Bari, Italy
104 P. N. Lebedev Physical Institute, Moscow, Russia
105 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
106 Novosibirsk State University (NSU), Novosibirsk, Russia
107 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
108 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
109 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
110 Universidad Autónoma de Madrid, Madrid, Spain
111 Universidad de Oviedo, Oviedo, Spain
112 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
113 CERN, European Organization for Nuclear Research, Geneva, Switzerland
114 Paul Scherrer Institut, Villigen, Switzerland
115 Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
116 Universität Zürich, Zurich, Switzerland
117 National Central University, Chung-Li, Taiwan
118 National Taiwan University (NTU), Taipei, Taiwan
119 Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
120 Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
121 Middle East Technical University, Physics Department, Ankara, Turkey
122 Bogazici University, Istanbul, Turkey
123 Istanbul Technical University, Istanbul, Turkey
124 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
125 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
126 University of Bristol, Bristol, United Kingdom
127 Rutherford Appleton Laboratory, Didcot, United Kingdom
128 Imperial College, London, United Kingdom
129 Brunel University, Uxbridge, United Kingdom
130 Baylor University, Waco, USA
131 Catholic University of America, Washington DC, USA
132 The University of Alabama, Tuscaloosa, USA
133 Boston University, Boston, USA
134 Brown University, Providence, USA
135 University of California, Davis, Davis, USA
136 University of California, Los Angeles, USA
137 University of California, Riverside, Riverside, USA
138 University of California, San Diego, La Jolla, USA
139 University of California, Santa Barbara, Department of Physics, Santa Barbara, USA
140 California Institute of Technology, Pasadena, USA
141 Carnegie Mellon University, Pittsburgh, USA
142 University of Colorado Boulder, Boulder, USA
143 Cornell University, Ithaca, USA
144 Fermi National Accelerator Laboratory, Batavia, USA
145 University of Florida, Gainesville, USA
146 Florida International University, Miami, USA
147 Florida State University, Tallahassee, USA
148 Florida Institute of Technology, Melbourne, USA
149 University of Illinois at Chicago (UIC), Chicago, USA
150 The University of Iowa, Iowa City, USA
151 Johns Hopkins University, Baltimore, USA
152 The University of Kansas, Lawrence, USA
153 Kansas State University, Manhattan, USA
154 Lawrence Livermore National Laboratory, Livermore, USA
155 University of Maryland, College Park, USA
156 Massachusetts Institute of Technology, Cambridge, USA
157 University of Minnesota, Minneapolis, USA
158 University of Mississippi, Oxford, USA
159 University of Nebraska-Lincoln, Lincoln, USA
160 State University of New York at Buffalo, Buffalo, USA
161 Northeastern University, Boston, USA
162 Northwestern University, Evanston, USA
163 University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA
Princeton University, Princeton, USA
University of Puerto Rico, Mayaguez, USA
Purdue University, West Lafayette, USA
Purdue University Northwest, Hammond, USA
Rice University, Houston, USA
University of Rochester, Rochester, USA
The Rockefeller University, New York, USA
Rutgers, The State University of New Jersey, Piscataway, USA
University of Tennessee, Knoxville, USA
Texas A&M University, College Station, USA
Texas Tech University, Lubbock, USA
Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA
Wayne State University, Detroit, USA
University of Wisconsin—Madison, Madison, WI, USA

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria.
cAlso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
dAlso at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
eAlso at Universidade Estadual de Campinas, Campinas, Brazil.
fAlso at Universidade Federal de Pelotas, Pelotas, Brazil.
gAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
hAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
iAlso at Joint Institute for Nuclear Research, Dubna, Russia.
jAlso at Suez University, Suez, Egypt.
kAlso at British University in Egypt, Cairo, Egypt.
lAlso at Fayoum University, El-Fayoum, Egypt.
mAlso at Helwan University, Cairo, Egypt.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at IIT Bhubaneswar, Bhubaneswar, India.
Also at Institute of Physics, Bhubaneswar, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at University of Ruhuna, Matara, Sri Lanka.
aAlso at Isfahan University of Technology, Isfahan, Iran.
bAlso at Yazd University, Yazd, Iran.
cAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
dAlso at Università degli Studi di Siena, Siena, Italy.
eAlso at INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy.
fAlso at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy.
gAlso at Purdue University, West Lafayette, USA.
hAlso at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
iAlso at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
jAlso at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
kAlso at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
lAlso at Institute for Nuclear Research, Moscow, Russia.
mAlso at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
nAlso at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
oAlso at University of Florida, Gainesville, USA.
pAlso at P. N. Lebedev Physical Institute, Moscow, Russia.
qAlso at California Institute of Technology, Pasadena, USA.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.

Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

Also at National and Kapodistrian University of Athens, Athens, Greece.

Also at Riga Technical University, Riga, Latvia.

Also at Universität Zürich, Zurich, Switzerland.

Also at Stefan Meyer Institute for Subatomic Physics.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Istanbul Aydin University, Istanbul, Turkey.

Also at Mersin University, Mersin, Turkey.

Also at Cag University, Mersin, Turkey.

Also at Piri Reis University, Istanbul, Turkey.

Also at Izmir Institute of Technology, Izmir, Turkey.

Also at Necmettin Erbakan University, Konya, Turkey.

Also at Marmara University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Istanbul Bilgi University, Istanbul, Turkey.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at Instituto de Astrofísica de Canarias, La Laguna, Spain.

Also at Utah Valley University, Orem, USA.

Also at Beykent University.

Also at Bingol University, Bingol, Turkey.

Also at Erzincan University, Erzincan, Turkey.

Also at Sinop University, Sinop, Turkey.

Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.

Also at Texas A&M University at Qatar, Doha, Qatar.

Also at Kyungpook National University, Daegu, Korea.